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Local direct method

e(t,0) = H(q,0) ' [wy(t) — G(q, 0)uwp(t)]

A Wt - Estimate transfer wp — wy and model
. S s the disturbance process on the output.

- consistent estimate and ML properties

Additional problem:

If: * v signals are correlated, i.e. ®,(w) non-diagonal, or
e some in-neighbors of wy are not included in wp

then confounding variables can occur, destroying the consistency results

[1] Dankers et al., [EEE-TAC, 2016; Dankers et al., IFAC 2017 TU/e



Confounding variable

Confounding variable 112l

Unmeasured signal that has (unmeasured paths) to both the
input and output of an estimation problem. %
In networks they can appear in two different ways:

e |f v disturbances on inputs and outputs are correlated

e If non-measured in-neighbors of w; affect signals in wy

[1] J. Pearl, Stat. Surveys, 3, 96-146, 2009

[2] A.G. Dankers et al., Proc. IFAC World Congress, 2017. TU/e



Confounding variables

e Direct confounding variable:

V1, V2
correlated

——)

Multivariate
noise model

When estimating w; — wsy consistency is lost!

Predict both w; and wy, == Adding predicted outputs (112!

Becomes a multi output local identification problem.

[1] P.M.J. Van den Hof et al., CDC 2019. TU
[2] K.R. Ramaswamy et al., IEEE-TAC, 2021. e



Confounding variables

* Indirect confounding variable:

Non-measurable wr is a confounding variable

Two possible solutions:

1. Include w4 =) add predictor input
wp = {w1, w3, wg, wg} wy = {wsz}

2. Predict witoo =mmp add predictor output
Wp — {w17w37w6} wy = {w17w2}

 There are degrees of freedom in choosing the predictor model

TU/e



Handling confounding variables in local module identification

“Blocking” confounding variables by adding predictor inputs

By adding w4 as predictor input, new confounding variable
for wy — ws.
Does this help? v

raq

Yes. Since we do not need an accurate model of G5,

TU/e



Handling confounding variables in local module identification

Confounding variables and closed-loop mechanisms

In closed-loop case
(when predicting only w, ):

e Correlation between
wy and vz is no
problem, as long as it
passes through ws.

* Correlation between
v1 and v2 is a problem.

TU/e



Algorithm for dealing with confounding variables

For estimating target module G;

Select input w; and output w;
Add inputs to satisfy the parallel path and loop condition
Check on direct confounding variables = add output and return to step 2

el

Check on indirect confounding variables

a) Add output and return to step 2, OR
b) Add input

Algorithm always reaches a convergence point where conditions are satisfied.
The choice options lead to different end-results for signals to be included

== different predictor models X
that all can reach consistency of G j;

TU/e



Direct method

General setup:

Target module
/ g
B -
Wp G Wy,

Wo — > Wo

\ 4

\ 4

Different predictor models:

e Full input case: include all in-neighbors of w,
*  Minimum node signals case : maximize number of outputs
e User selection case : dedicated choice based on measurable nodes

TU/e
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Different strategies — direct method

* Full input case
e User selection case

e  Minimum measurements case

Network with v; correlated with v; and vy,
v, correlated with vs.

TU/e
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Full input case

We include all in-neighbors of the
predicted outputs as predictor inputs

Maximum use of information in signals

w, = {2,3,4} w, = {1}
Handling direct confounding variable:

wp, = {2,3,4} wy, = {1,3}
Handling indirect confounding variable:

%:{29334a6} Wy, :{1’3}

vz

Direct identification w, — w,

TU/e
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User selection case

* The user does not have access
to all node signals

* Four node signals can be
measured

e Parallel path and loop condition is
satisfied

e Start with:
wy, = {2,3} w, = {1}




User selection case
wy, = {2,3} w, = {1}

Handling direct confounding variable:

wp = {2,3} wy, = {1,3}

Indirect confounding variables:

(v4,v5):
Wp = {273} wy, = {17 3, 5} vy
A —

wy, = {2,3} w, ={1,2,3,5}

Direct identification w, — wj,

13



Minimum measurements case

e Select signals to satisfy the
parallel path and loop condition

* Handle all confounding variables
by including signals in output

wp = {2,3} w, ={1,2,3}

Direct identification w, — wj,

y TU/e
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Different strategies for same network and target module

Same network with different identification setups that lead to consistent estimate of the
target module with Maximum likelihood properties based on the strategy used.

Full input case User selection case Minimum measurements

case

w2 - - w]. — -
w2 w1y
W3 w1 W32 w2
— wg | — — (W2
w4y w3 W3 W3
Ws w3
We - T Ws - -

Data informativity conditions: dim(r) > dim(w,) (see later)

TU/e
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Theory for single module direct method (MIMO)

Separate the node variables of the network into

Wo [ nodes that appear in input and output
w— |Wo| _ |output of target module, if not present in w;,
o wy | nodes that appear only in the input
| w; | I unmeasured nodes )

and write the network equations:

Wo Goo Goo Gai Goz | |Wo Hoo Hyo Hg, Hy| |e

Wo | _ Go Goo Ga Gez| |wo -I-R(q)r + Ho Ho Ha He| |eo

wy Ge Guo Gu G| |w Ho, H, H, H:||e
Wz |Gzo Gzo Gz Gzz| (w2 \Hzo H;, Hp H| |ez

Then remove node variables w; from the equations through immersion

TU/e
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Theory for single module direct method (MIMO)

Upon immersing node variables w; there exists a system transform into the
equivalent network representation

Wy é\o]%Jr[Er\O]%
Wo | = | = _ wy — o
Uy, uD‘GAoJ,wO \O‘H,ujél
—— ~ ~ ——

with &,,, @ white noise process, and H,, monic, stable and stably invertible.
Showing that disturbances on inputs and outputs can be decoupled.
Upper part of the equation leads to: wg| _ (:;gg (:;gu We n EIQQ EIQO &,
W, Gog G wy, Hog Hoo €o
—~—

v b ~~ IS
to be used for identification wy G wp H &

at

TU/e



Local direct method

N {wA—> - -—>wo} “

Wg =—> — Wo

Target module sz‘ is embedded in (possible)
MIMO system

Prediction error: e(t,0) = H(q,0) [w,(t) — G(q, 0)w,(t) — Rry(t)]

[*] Only those r-signals that lead to a constant, non-dynamic, transfer R can be handled
by a direct method. Other r-signals occur in the disturbance terms.
1 N-1
Quadratic identification criterion: Oy := arg mgin I Z e(t,0)"Qe(t,0) Q>0
t=0

[1] K.R. Ramaswamy et al., IEEE-TAC, 2021

19 [2] VdH et al., CDC-2020. . TU/e
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o —

Wg =—> — Wo

)

Consistency result {
Wp

0, if

sz'(q, éN) is a consistent estimate of Gﬂ,

e Se M

The parallel path and loop condition is satisfied

A technical condition on presence of delays is satisfied

Confounding variable conditions are satisfied

Data set is informative with respect to M

According to PEM/ML theory, the estimator can achieve the CRLB

[1] K.R. Ramaswamy et al., IEEE-TAC, 2021.
[2] VdH et al., CDC-2020.

TU/e
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Consistency result

Wo ———p > W,

wp{:ji} A G (G| >wo} w,

Confounding variable conditions:

e ;cQUA

e No confouding variables between w, and w,

e No confouding variables between w, and w;,
e No unmeasured paths from {i, j} to wj

These conditons can always be satisfied by appropriate choices of w,, ws, w,
and influence the selection of the predictor model

TU/e
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Data informativity (classical definition)

Predictor model: wy(t,0) = W(q, 0)z(t)

] i i {wy(t)]
for a model set M := (G(q,0), H(q,0), R)gco With z(t) := wp(t)
Tp(t)

Then a quasi-stationary data sequence {z(t)}¢=o.... is informative with respect to M
if for any two models in M :

[E[<w1(q>—wz(q))z(t)]2=0 = Wi(e') EWz(ei“’)]

A sufficient condition for this is that z is persistently exciting:

{(I)z(w) > 0 foralmost all w ]

[1] L. Ljung, Englewood Cliffs, NJ: Prentice-Hall, 1999 TU/e
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Data informativity - network case

In our situation of specific predictor model:

[@n(w) > 0 for almost all w ]

0= o) o

* Note that K is a filtered version of (7, e)

e with(r, e) persistently exciting

TU/e
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Data informativity (path-based condition)

A signal y(t) = F(q)x(t) with x persistently exciting,
is persistently exciting iff ' has full row rank.

This condition can be verified in a generic sense,

by considering the generic rank of F [11.12]
br—w =3

linking to the maximum number of vertex disjoint paths between inputs and outputs

K is persistently exciting holds generically if there are
|D| + |Y| vertex disjoint paths between external signals (r,e) andk = [

4

Rework the conditions, since & is also a (filtered) external signal (white noise)

[1] Van der Woude, 1991
[2] Hendrickx, Gevers & Bazanella, CDC 2017, TAC 2019. TU e
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External signals on original network

Final result:

Generic data informativity check becomes:
|D| vertex disjoint paths between external signals (7p, ) and wp

Target module

Signalsin 7p € 1y
l’y—bq
® . b

- o
........

Loops through wy Path from w, to wg
pass through wp passes throughuy,

Signals in a4 : All external signals (7, e) that have a direct or unmeasured path to wy

TU/e
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Example
Target: identify G971

Predictor model: w1y — qwi,w
{ 1} { 1 2},
L) wy
2 x 2 noise model accounts for confounding variable

wg ={w1} wy =0 x=0

Situation1: r{ = ro =0 rp =0

There are no external signals available for exciting wp = {w1}

[ Data-informativity condition NOT satisfied ]

TU/e
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Example
Target: identify G971

Predictor model: w1y — qwi,w
{ 1} { 1 2},
L) wy
2 x 2 noise model accounts for confounding variable

wg ={w1} wy =0 x=0

Situation 2: ro = 0;r1 present

r1 runs through a loop that does not pass through an input signal ==y 7p = ()

There are no external signals available for exciting wp = {w1}

[ Data-informativity condition NOT satisfied ]
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Example
Target: identify G971

Predictor model: w1y — qwi,w
{ 1} { 1 2},
L) wy
2 x 2 noise model accounts for confounding variable

wg ={w1} wy =0 x=0

Situation 3: r1 = 0; r2 present

ro has a path to wg = {wq} that does not pass through uy;, == 7, = ()

There are no external signals available for exciting wp = {w1}

[ Data-informativity condition NOT satisfied ]

TU/e
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Example

Target: identify G971

i N {wq, wod — {wq, w
Predictor model: | { ZD2} { 11;);2}

2 x 2 noise model accounts for confounding variable

wg = {w,wa} wy =0 a =0

Situation 3: ry,7ro present
r1, 9 satisfies the conditions for rp =wmsy 7p = {71,72}

Since there are two vertex-disjoint paths from 71,72 to wp = {w1, w2}

[ Data-informativity satisfied ! ]

TU/e
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Data informativity - interpretation

[tI)H(w) > 0 for almost all w ]
o=[g8]

e Disturbances &, can not be used for exciting wy,

e For every signal in w, we need an r-excitation

e More “expensive” experiments with growing # outputs

TU/e
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Summary local direct method for single module ID

Flexible algorithm for selecting measured signals in a predictor model

that leads to consistent (and minimum variance) module estimates
Verifiable conditions on the network topology (assumed a priori known)
Path-based conditions also for (generic) data informativity

For the actual identification algorithm: preferably regularized techniques

Extensions:

- effective use of r-signals can further relax the conditions for signal selection!

- include topology estimation as a first step!?

[1] Ramaswamy, VdH, Dankers, CDC 2019. TU
[2] Rajagopal, MSc, November 2020; CDC 2021 submitted. e
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Identifiability and data informativity

- For a particular identification method:
Consistency conditions include aspects of data-informativity
and underlying conditions of identifiability (implicitly)

- Current consistency conditions can be split in (a) identifiability conditions and
(b) data informativity conditions

- Network identifiability is identification method - independent
Reflects choice of predictor model:

— presence and location of excitation and disturbance signals

— parametrized model set (fixed modules and disturbance correlations)

TU/e
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